Theoretical Investigations of CO2 and H2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material

2013 
Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal–organic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4′-dipyridylacetylene (dpa) rings and pillars of SiF62– ions. This class of water stable MOMs shows great promise in practical gas sorption/separation with especially high selectivity for CO2 and variable selectivity for other energy related gases. Simulated CO2 sorption isotherms and isosteric heats of adsorption, Qst, at ambient temperatures were in excellent agreement with the experimental measurements at all pressures considered. Further, it was observed that the Qst for CO2 increases as a function of uptake in [Cu(dpa)2SiF6-i]. This suggests that nascently sorbed CO2 molecules within a channel contribute to a more energetically favorable site for additional CO2 molecules, i.e., in stark contrast to typical behavior, sorbate intermolecular interactions enhance sorption energetics with increased loading. The simul...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    41
    Citations
    NaN
    KQI
    []