Development of tuneable Fabry-Pérot sensors for parallelised photoacoustic signal acquisition

2019 
Fabry-Perot (FP) sensors have enabled high resolution 3D photoacoustic (PA) imaging in backward mode. However, raster-scanning of the interrogation laser beam across the sensor can result in slow 3D image acquisition. To overcome this limitation, parallelized PA signal acquisition can be used for which FP sensors with uniform optical thickness are required. In this work, the optical thickness is tuned a) irreversibly through the use of a photopolymer host matrix and b) actively using embedded electro-optic (EO) chromophores. Polymer spacers (5 μm) were deposited using spin coating and sandwiched between two dielectric mirrors and transparent ITO electrodes. The employed polymer guest-host system consists of an EO chromophore (2-methyl-4-nitroaniline) and poly(vinyl cinnamate). EO tuneability was induced using contact poling and a tuneability of 68 pm was demonstrated. The optical thickness was homogenised by raster scanning a UV beam whilst varying the exposure time across a 4 mm2 detection aperture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    3
    Citations
    NaN
    KQI
    []