Impacts of Nicotiana glauca Graham Invasion on the Vegetation Composition and Soil: A Case Study of Taif, Western Saudi Arabia

2021 
Invasive species are considered a serious problem in different ecosystems worldwide. They can compete and interfere with native plants, leading to a shift in community assembly and ecosystem function. The present study aimed to evaluate the effects of Nicotiana glauca Graham invasion on native vegetation composition and soil of the most invaded locations in the Taif region, Western Saudi Arabia, including Alwaht (WHT), Ar-Ruddaf (RDF), and Ash-shafa (SHFA). Plant species list, life span, life form, and chorotypes were assessed. Six locations highly infested with N. glauca shrubs were selected, and the morphological parameters of the shrubs were measured. Within each location, richness, evenness, relative density of species, and soil were measured either under the canopy of N. glauca shrubs or outside the canopy. Floristic analysis revealed the existence of 144 plant species, mainly perennial. The shrubs at the SHFA1 location showed the highest values of all measured morphological parameters. The WHT 1 location showed high richness and evenness, while the WHAT 2 location showed less richness and evenness. The invaded locations showed substantial variation in the community composition. Additionally, the effect of N. glauca on the understory species varied from competition to facilitation, where most of the understory species were inhibited. As an average of all locations, 65.86% of the plant species were recorded only outside the canopy of N. glauca. The vegetation analysis revealed that the SHFA location is more vulnerable to invasion that could be ascribed to its wide range of habitats and high disturbance. The soil–vegetation relationships showed significant variations among the studied locations regarding soil composition, and thereby showed a wide ecological range of the invasive shrubs N. glauca. Therefore, the invasion of N. glauca in the Taif region altered the species interactions, nutrients, and soil properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []