A Cascade and Heterogeneous Neural Network for CT Pulmonary Nodule Detection and Its Evaluation on both Phantom and Patient Data

2021 
Abstract Screening of pulmonary nodules in computed tomography (CT) is crucial for early diagnosis and treatment of lung cancer. Although computer-aided diagnosis (CAD) systems have been designed to assist radiologists to detect nodules, fully automated detection is still challenging due to variations in nodule size, shape, and density. In this paper, we first propose a fully automated nodule detection method using a cascade and heterogeneous neural network trained on chest CT images of 12155 patients, then evaluate the performance by using phantom (828 CT images) and clinical datasets (2640 CT images) scanned with different imaging parameters. The nodule detection network employs two feature pyramid networks (FPNs) and a classification network (BasicNet). The first FPN is trained to achieve high sensitivity for nodule detection, and the second FPN refines the candidates for false positive reduction (FPR). Then, a BasicNet is combined with the second FPR to classify the candidates into either nodules or non-nodules for the final refinement. This study investigates the performance of nodule detection of solid and ground-glass nodules in phantom and patient data scanned with different parameters. The results show that the detection of the solid nodules is robust to imaging parameters, and for GGO detection, reconstruction methods “iDose4-YA” and “STD-YA” achieve better performance. For thin-slice images, higher performance is achieved across different nodule sizes with reconstruction method “iDose4-STD”. For 5 mm slice thickness, the best choice is the reconstruction method “iDose4-YA” for larger nodules (> 5 mm). Overall, “iDose4-YA” is suggested to achieve the best balanced results for both solid and GGO nodules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []