Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum

2017 
Abstract Nano-aluminium oxide (nAl 2 O 3 ) is one of the most widely used nanomaterials. However, nAl 2 O 3 toxicity mechanisms and potential beneficial effects on terrestrial plant physiology remain poorly understood. Such knowledge is essential for the development of robust nAl 2 O 3 risk assessment. In this study, we studied the influence of a 10-d exposure to a total selected concentration of 98 μM nAl 2 O 3 or to the equivalent molar concentration of ionic Al (AlCl 3 ) (196 μM) on the model plant Arabidopsis thaliana on the physiology (e.g., growth and photosynthesis, membrane damage) and the transcriptome using a high throughput state-of-the-art technology, RNA-seq. We found no evidence of nAl 2 O 3 toxicity on photosynthesis, growth and lipid peroxidation. Rather the nAl 2 O 3 treatment stimulated root weight and length by 48% and 39%, respectively as well as photosynthesis opening up the door to the use of nAl 2 O 3 in biotechnology and nano agriculture. Transcriptomic analyses indicate that the beneficial effect of nAl 2 O 3 was related to an increase in the transcription of several genes involved in root growth as well as in root nutrient uptake (e.g., up-regulation of the root hair-specific gene family and root development genes, POLARIS protein). By contrast, the ionic Al treatment decreased shoot and root weight of Arabidopsis thaliana by 57.01% and 45.15%, respectively. This toxic effect was coupled to a range of response at the gene transcription level including increase transcription of antioxidant-related genes and transcription of genes involved in plant defense response to pathogens. This work provides an integrated understanding at the molecular and physiological level of the effects of nAl 2 O 3 and ionic Al in Arabidopsis .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    32
    Citations
    NaN
    KQI
    []