Characterize groundwater vulnerability to intensive groundwater exploitation using tritium time-series and hydrochemical data in Shijiazhuang, North China Plain

2021 
Abstract The deterioration of water quality in shallow groundwater systems over the past decades has attracted increased amounts of attention from hydrogeologists. Groundwater vulnerability and its changes are the factors that cause groundwater deterioration. Combining of the mean residence times (MRTs) with chemical characteristics of groundwater can be applied to understand groundwater vulnerability and its changes. The groundwater MRTs ranged from 6 to 180 years, with MRTs of 6 to 77 years in the shallow aquifer. Spatial distribution of groundwater MRTs suggested that young groundwater trended to extend. Relatively uniform MRTs and concentrations of ions were found above the main pumped well depth. High concentrations of ions (K+, Na+, Ca2+, Mg2+, HCO3-, Cl- and SO42-) were mainly distributed in the western piedmont plain areas with short turnover time but with low productivity, meaning that the aquifer is susceptible to human activities and hardly migrate out. Elevated concentrations of nitrate and others ions (such as K+, Ca2+, Cl- and SO42-) also were observed in moderately old groundwater (20
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []