A Splice Site-Sensing Conformational Switch in U2AF2 is Modulated by U2AF1 and its Recurrent Myelodysplasia-Associated Mutation

2019 
An essential heterodimer of the U2AF1 and U2AF2 pre-mRNA splicing factors nucleates spliceosome assembly at polypyrimidine (Py) signals preceding the major class of 3′ splice sites. Among myelodysplastic syndromes (MDS), U2AF1 frequently acquires an S34F-encoding mutation. The influence of the U2AF1 subunit and its S34F mutation on the U2AF2 conformations remains unknown. Here, we employ single molecule Forster resonance energy transfer (FRET) to determine the influence of wild-type or S34F-substituted U2AF1 on the conformational dynamics of U2AF2 and its splice site RNA complexes. In the absence of RNA, the U2AF1 subunit stabilizes a high FRET value, which by structure-guided mutagenesis corresponds to a closed conformation of the tandem U2AF2 RNA recognition motifs (RRMs). When the U2AF heterodimer is bound to a strong, uridine-rich splice site, U2AF2 switches to a lower FRET value characteristic of an open, side-by-side arrangement of the RRMs. Remarkably, the U2AF heterodimer binds weak, uridine-poor Py tracts as a mixture of closed and open U2AF2 conformations, which are modulated by the S34F mutation. Shifts between open and closed U2AF2 may underlie U2AF1-dependent splicing of degenerate Py tracts and contribute to a subset of S34F-dysregulated splicing events in MDS patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []