Observation of Effective Pseudospin Scattering in ZrSiS

2017 
3D Dirac semimetals are an emerging class of materials that possess topological electronic states with a Dirac dispersion in their bulk. In nodal-line Dirac semimetals, the conductance and valence bands connect along a closed path in momentum space, leading to the prediction of pseudospin vortex rings and pseudospin skyrmions. Here, we use Fourier transform scanning tunneling spectroscopy (FT-STS) at 4.5 K to resolve quasiparticle interference (QPI) patterns at single defect centers on the surface of the line nodal semimetal zirconium silicon sulfide (ZrSiS). Our QPI measurements show pseudospin conservation at energies close to the line node. In addition, we determine the Fermi velocity to be ℏvF = 2.65 ± 0.10 eV A in the Γ–M direction ∼300 meV above the Fermi energy EF and the line node to be ∼140 meV above EF. More importantly, we find that certain scatterers can introduce energy-dependent nonpreservation of pseudospin, giving rise to effective scattering between states with opposite pseudospin deep in...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    37
    Citations
    NaN
    KQI
    []