Hydrogeochemistry, identification of hydrogeochemical evolution mechanisms, and assessment of groundwater quality in the southwestern Ordos Basin, China.

2021 
Understanding the evolution process of hydrogeochemistry and groundwater quality is essential for water supply and health in the southwestern Ordos Basin, where groundwater is a vital source for drinking. This study systematically illustrates the hydrogeochemical characteristics and evolution mechanism based on the groundwater samples (n = 67) collected from Loess area by integrating multivariate statistical methods and hydrogeochemical methods. Furthermore, the entropy water quality index (EWQI) and water quality indices combined with spatial analysis were employed to evaluate the suitability of groundwater for drinking and irrigation purposes and analyze the spatial variation of water quality. The hierarchical cluster analysis and principal component analysis classified groundwater dataset into four clusters and four components which were examined using a Piper diagram and Gibbs diagram, representing different hydrogeochemical characteristics and controlling factors. Based on results, the groundwater chemistry was characterized by representative water types: freshwater (cluster 1, cluster 2), low salinity (half of cluster 3), high salinity (half of cluster 3, cluster 4), and the main controlling factors of hydrogeochemistry revealed by Gibbs diagram were evaporation crystallization (cluster 3, cluster 4) and water–rock interactions (cluster 1, cluster 2). Moreover, the Gaillardet diagram, chloro-alkaline indices, binary diagram, and saturation index further comprehensively illustrate that the silicate and evaporite weathering, ion exchange, dissolution of halite, gypsum, and anhydrite are responsible for hydrogeochemical process. Based on EWQI and ArcGIS, the groundwater quality is categorized as excellent (47.0%), good (31.8%), medium (4.5%), poor (6.1%), and extremely poor (10.6%) types, and the quality in the south of the study area is better than north. Additionally, the USSL diagram shows that most of samples belong to C3S1 (high-salinity hazard and low-sodium hazard) and C2S1 (medium-salinity hazard and low-sodium hazard), and Wilcox diagram shows that 77.2% of samples are suitable for irrigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    0
    Citations
    NaN
    KQI
    []