Spectroscopic phonon and extended x-ray absorption fine structure measurements on 3C-SiC/Si (001) epifilms

2018 
Abstract Comprehensive experimental and theoretical studies are reported to assess the vibrational and structural properties of 3C-SiC/Si (001) epilayers grown by chemical vapor deposition in a vertical reactor configuration. While the phonon features are evaluated using high resolution infrared reflectance (IRR) and Raman scattering spectroscopy (RSS) – the local inter-atomic structure is appraised by synchrotron radiation extended x-ray absorption fine structure (SR-EXAFS) method. Unlike others, our RSS results in the near backscattering geometry revealed markedly indistinctive longitudinal- and transverse-optical phonons in 3C-SiC epifilms of thickness d   0.4 μm. The estimated average value of biaxial stress is found to be an order of magnitude smaller while the strains are two-orders of magnitude lower than the lattice misfits between 3C-SiC and Si bulk crystals. Bruggeman’s effective medium theory is utilized to explain the observed atypical IRR spectra in 3C-SiC/Si (001) epifilms. High density intrinsic defects present in films and/or epilayer/substrate interface are likely to be responsible for ( a ) releasing misfit stress/strains, ( b ) triggering atypical features in IRR spectra, and ( c ) affecting observed local structural traits in SR-EXAFS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    5
    Citations
    NaN
    KQI
    []