Involvement of Epac1/Rap1/CaMKI/ HDAC5 signaling cascade in the regulation of placental cell fusion

2013 
The placental transcription factor glial cell missing 1 (GCM1) and its target gene syncytin-1 are involved in cAMP-stimulated trophoblastic fusion for syncytiotrophoblast formation. GCM1 DNA-binding activity is inhibited by sumoylation, whereas GCM1 stability is decreased by deacetylation. cAMP enhances GCM1 desumoylation through the Epac1/Rap1/CaMKI signaling cascade and CaMKI is known to down-regulate class IIa HDAC activity. In this paper, we study whether the Epac1/Rap1/CaMKI signaling cascade regulates GCM1 activity and placental cell fusion through class IIa HDACs. Interaction and co-localization of GCM1 and HDAC5 were characterized by co-immunopre- cipitation analysis and immunofluorescence microscopy (IFM). Regulation of GCM1 transcription activity and syncytin-1 expression by HDAC5 was studied by transient expression. Phospho-specific antibodies against HDAC5, RNA interference and IFM were used to examine the de- repression of GCM1 activity, syncytin-1 expression and cell-cell fusion by Epac1/Rap1/CaMKI signaling cascade in placental BeWo cells expressing constitutively active Epac1 and CaMKI. We demonstrate that both GCM1 and HDAC5 are expressed in the syncytiotrophoblast layer of full-term placenta and the nuclei of BeWo cells. The interaction between HDAC5 and GCM1 facilitates GCM1 deacetylation and sup- presses its transcriptional activity. In contrast, Epac1 stimulates HDAC5 phosphorylation on Ser259 and Ser498 in a Rap1- and CaMKI-dependent manner leading to nuclear export of HDAC5 and thereby de-repression of GCM1 transcriptional activity. Importantly, HDAC5 suppresses syncytin-1 expression and cell-cell fusion in BeWo cells, which is counteracted by Epac1 and CaMKI. Our results reveal a new layer of regulation of GCM1 activity and placental cell fusion through the Epac1/Rap1/CaMKI signaling cascade by restraining HDAC5 from interacting with and mediating GCM1 deacetylation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    13
    Citations
    NaN
    KQI
    []