Estimating the spatial and temporal impacts of climate change on rainfall reliability: An example in a Mediterranean agricultural region

2013 
Abstract Rainfall is the major driver of crop growth in Mediterranean agricultural regions and its spatial and temporal distributions determine yield potential. This study uses a long term spatial archive of rainfall observations for the Eyre Peninsula (South Australia) to estimate the spatial and temporal impacts of climate change on wheat yield. The three step process involved: (1) cluster analysis and statistical comparison to spatially distinguish heterogeneous “hazardscapes” (places that represent the physical susceptibility to hazards ( Khan, 2012 )); (2) using historical rainfall reliabilities to estimate the probability of receiving rainfall within a range of predefined thresholds and season for each hazardscape; (3) applying 2030 and 2070 climate change projections to determine the potential future impacts on rainfall. Nine hazardscapes were spatially differentiated each having temporally different historical seasonal rainfall reliabilities. Variations over space and time mean that the impacts of climate change will be spatially explicit. Projected rainfall reductions for 2030 showed marginal impact on hazardscapes with low seasonal reliabilities, primarily in winter and spring. The 2070 projections showed that some hazardscapes were unlikely to receive past rates of rainfall thus limiting the ongoing prospects of current and perhaps the potential adoption of alternative rain-fed land uses. Reductions in rainfall for hazardscapes with higher historical rainfall reliabilities will cause negative impacts on crop development. The ability to quantify the potential spatial and temporal impacts of climate change on seasonal trends will inform land managers' climate change mitigation and adaptation pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    5
    Citations
    NaN
    KQI
    []