Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources

2018 
Cavity quantum electrodynamics is the art of enhancing light-matter interaction of photon emitters in cavities with opportunities for sensing, quantum information, and energy capture technologies. To boost emitter-cavity interaction, that is, coupling strength g, ultrahigh quality cavities have been concocted yielding photon trapping times of microsecondsy to milliseconds. However, such high-Q cavities give poor photon output, hindering applications. To preserve high photon output, it is advantageous to strive for highly localized electric fields in radiatively lossy cavities. Nanophotonic antennas are ideal candidates combining low-Q factors with deeply localized mode volumes, allowing large g, provided the emitter is positioned exactly right inside the nanoscale mode volume. Here, with nanometer resolution, we map and tune the coupling strength between a dipole nanoantenna-cavity and a single molecule, obtaining a coupling rate of gmax ∼ 200 GHz. Together with accelerated single photon output, this prov...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    30
    Citations
    NaN
    KQI
    []