High density polarized hydrogen gas target for storage rings

1995 
A target of gaseous polarized hydrogen was formed by injecting polarized hydrogen atoms (produced by Stern–Gerlach spin separation) into a storage cell consisting of a cylindrical tube open at both ends. The target was placed in a storage ring to study the target characteristics (nuclear polarization, target thickness, radiation resistance). A weak transverse guide field (5 G) was applied to define the polarization direction. When atoms in a single hyperfine state were selected, the nuclear polarization of the target was measured to be 0.80±0.02. The areal density of the target under these conditions was (5.5±0.2)×1013 H/cm2, while for two spin states (applicable to experiments in high energy rings where a strong magnetic field can be applied to the target) the target thickness was found to be (8.2±0.3)×1013 H/cm2. The target polarization was unaffected by prolonged exposure of the target to beams up to 1 mA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    17
    Citations
    NaN
    KQI
    []