Light emission from direct band gap germanium containing split-interstitial defects

2021 
The lack of useful and cost-efficient group-IV direct band gap light emitters still presents the main bottleneck for complementary metal-oxide semiconductor-compatible short-distance data transmission, single-photon emission, and sensing based on silicon photonics. Germanium, a group-IV element like Si, is already widely used in silicon fabs. While the energy band gap of Ge is intrinsically indirect, we predict that the insertion of Ge-Ge split-[110] interstitials into crystalline Ge can open up a direct band gap transmission path. Here, we calculate from first principles the band structure and optical emission properties of Ge, Sb, and Sn split-[110] interstitials in bulk and low-dimensional Ge at different doping concentrations. Two types of electronic states provide the light-emission enhancement below the direct band gap of Ge: a hybridized L-$\mathrm{\ensuremath{\Gamma}}$ state at the Brillouin zone center and a conduction band of $\mathrm{\ensuremath{\Delta}}$ band character that couples to a raised valence band along the $\mathrm{\ensuremath{\Gamma}}$-X direction. Majority carrier introduced to the system through doping can enhance light emission by saturation of nonradiative paths. Ge-Sn split interstitials in Ge shift the top of the valence band towards the $\mathrm{\ensuremath{\Gamma}}$-X direction and increase the $\mathrm{\ensuremath{\Gamma}}$ character of the L-$\mathrm{\ensuremath{\Gamma}}$ state, which results in a shift to longer emission wavelengths. Key spectral regions for datacom and sensing applications can be covered by applying quantum confinement in defect-enhanced Ge quantum dots for an emission wavelength shift from the midinfrared to the telecom regime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    5
    Citations
    NaN
    KQI
    []