language-icon Old Web
English
Sign In

Unveiling the enigma of ATLAS17aeu

2019 
Aim. The unusual transient ATLAS17aeu was serendipitously detected within the sky localisation of the gravitational wave trigger GW170104. The importance of a possible association with gravitational waves coming from a binary black hole merger led to an extensive follow-up campaign, with the aim of assessing a possible connection with GW170104. Methods. With several telescopes, we carried out both photometric and spectroscopic observations of ATLAS17aeu, for several epochs, between $\sim 3$ and $\sim 230$ days after the first detection. Results. We studied in detail the temporal and spectroscopic properties of ATLAS17aeu and its host galaxy. We detected spectral features similar to those of a broad lined supernova superposed to an otherwise typical long-GRB afterglow. Based on analysis of the optical light curve, spectrum and host galaxy SED, we conclude that the redshift of the source is probably $z \simeq 0.5 \pm 0.2$. Conclusions. While the redshift range we have determined is marginally compatible with that of the gravitational wave event, the presence of a supernova component and the consistency of this transient with the E$_{\rm p}$-E$_{\rm iso}$ correlation support the conclusion that ATLAS17aeu was associated with the long gamma-ray burst GRB170105A. This rules out the association of the GRB170105A/ATLAS17aeu transient with the gravitational wave event GW170104, which was due to a binary black hole merger.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    0
    Citations
    NaN
    KQI
    []