Resource allocation for relay assisted cognitive radio network

2013 
Different schemes, which performed channel, power and time allocation to enhance the network performance of overall end-to-end throughput for cooperative cognitive radio network, were investigated. Interference temperature limit of corresponding primary users was considered. Due to the constraints caused by multiple dual channels, the power allocation problem is non-convex and NP-hard. Based on geometric programming (GP), a novel and general algorithm, which turned the problem into a series of GP problems by logarithm approximation (LASGP), was proposed to efficiently solve it. Numerical results verify the efficiency and availability of the LASGP algorithm. Solutions of LASGP are provably convergent and globally optimal point can be observed as well as the channel allocation always outperforms power or timeslot allocation from simulations. Compared with schemes without any allocation, the scheme with joint channel, power and timeslot allocation significantly increases the overall end-to-end throughput by no less than 70% under same simulation conditions. This scheme can not only maximize the throughput by increasing total maximum power of relay node, but also outperform other resource allocation schemes when lower total maximum power of source and relay nodes is restricted. As the total maximum power of source node increases, the scheme with joint channel and timeslot allocation performs best in all schemes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []