Utility of Molecular and Structural Brain Imaging to Predict Progression from Mild Cognitive Impairment to Dementia

2017 
: This project compares three neuroimaging biomarkers to predict progression to dementia in subjects with mild cognitive impairment (MCI). Eighty-eight subjects with MCI and 40 healthy controls (HCs) were recruited. Subjects had a 3T magnetic resonance imaging (MRI) scan, and two positron emission tomography (PET) scans, one with Pittsburgh compound B ([11C]PIB) and one with fluorodeoxyglucose ([18F]FDG). MCI subjects were followed for up to 4 y and progression to dementia was assessed on an annual basis. MCI subjects had higher [11C]PIB binding potential (BPND) than HCs in multiple brain regions, and lower hippocampus volumes. [11C]PIB BPND, [18F]FDG standard uptake value ratio (SUVR), and hippocampus volume were associated with time to progression to dementia using a Cox proportional hazards model. [18F]FDG SUVR demonstrated the most statistically significant association with progression, followed by [11C]PIB BPND and then hippocampus volume. [11C]PIB BPND and [18F]FDG SUVR were independently predictive, suggesting that combining these measures is useful to increase accuracy in the prediction of progression to dementia. Hippocampus volume also had independent predictive properties to [11C]PIB BPND, but did not add predictive power when combined with the [18F]FDG SUVR data. This work suggests that PET imaging with both [11C]PIB and [18F]FDG may help to determine which MCI subjects are likely to progress to AD, possibly directing future treatment options.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []