Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells

1999 
Abstract We previously demonstrated that lysis of tumor cells that express Hsp70, the highly stress-inducible member of the HSP70 family, on their plasma membrane is mediated by natural killer (NK) cells. Here, we studied the effects of different proteins of the HSP70 family in combination with interleukin 2 (IL-2) on the proliferation and cytotoxic activity of human NK cells in vitro. Proliferation of NK cells was significantly enhanced by human recombinant Hsp70 (rHsp70) and to a lesser extent by rHsp70homC, the recombinant C-terminal peptide-binding domain derived from Hsp70hom, but not by the constitutive Hsc70 or DnaK, the Escherichia coli analogue of human Hsp70. Even rHsp70 protein alone moderately enhances proliferation and cytolytic activity of NK cells, thus indicating that the stimulatory effect is not strictly dependent on IL-2. NK cells stimulated with rHsp70 protein also exhibit an increased secretion of interferon g (IFN-g). The phenotypic characterization of NK cells with specificity for Hsp70-expressing tumor cells revealed a CD16 dim /CD56 bright and increased CD57 and CD94 expression. The cytolytic activity of NK cells also was significantly reduced when a CD94-specific antibody or rHsp70 was added directly before the cytotoxicity assay, whereas other antibodies directed against CD57 and major histocompatibility complex class I molecules or Hsp70 proteins, including Hsc70 and DnaK, did not affect the NK-mediated killing. However, long-term incubation of NK cells with rHsp70 protein enhances not only the proliferative but also the cytolytic response against Hsp70-expressing tumor cells. Our results indicate that the C-terminal domain of Hsp70 protein affects not only the proliferative but also the cytolytic activity of a phenotypically distinct NK cell population with specificity for Hsp70-expressing tumor cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    207
    Citations
    NaN
    KQI
    []