Phosphorylation of the UL31 Protein of Herpes Simplex Virus 1 by the US3-Encoded Kinase Regulates Localization of the Nuclear Envelopment Complex and Egress of Nucleocapsids

2009 
Herpes simplex virus 1 nucleocapsids bud through the inner nuclear membrane (INM) into the perinuclear space to obtain a primary viral envelope. This process requires a protein complex at the INM composed of the UL31 and UL34 gene products. While it is clear that the viral kinase encoded by the US3 gene regulates the localization of pUL31/pUL34 within the INM, the molecular mechanism by which this is accomplished remains enigmatic. Here, we have determined the following. (i) The N terminus of pUL31 is indispensable for the protein's normal function and contains up to six serines that are phosphorylated by the US3 kinase during infection. (ii) Phosphorylation at these six serines was not essential for a productive infection but was required for optimal viral growth kinetics. (iii) In the presence of active US3 kinase, changing the serines to alanine caused the pUL31/pUL34 complex to aggregate at the nuclear rim and caused some virions to accumulate aberrantly in herniations of the nuclear membrane, much as in cells infected with a US3 kinase-dead mutant. (iv) The replacement of the six serines of pUL31 with glutamic acid largely restored the smooth distribution of pUL34/pUL31 at the nuclear membrane and precluded the accumulation of virions in herniations whether or not US3 kinase was active but also precluded the optimal primary envelopment of nucleocapsids. These observations indicate that the phosphorylation of pUL31 by pUS3 represents an important regulatory event in the virion egress pathway that can account for much of pUS3's role in nuclear egress. The data also suggest that the dynamics of pUL31 phosphorylation modulate both the primary envelopment and the subsequent fusion of the nascent virion envelope with the outer nuclear membrane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    125
    Citations
    NaN
    KQI
    []