A MEMS gravimeter with multi-axis gravitational sensitivity

2021 
A single-axis Microelectromechanical system gravimeter has recently been developed at the University of Glasgow. The sensitivity and stability of this device was demonstrated by measuring the Earth tides. The success of this device was enabled in part by its extremely low resonant frequency. This low frequency was achieved with a geometric anti-spring design, fabricated using well-established photolithography and dry etch techniques. Analytical models can be used to calculate the results of these non-linear oscillating systems, but the power of finite element analysis has not been fully utilised to explore the parameter space before now. In this article, the results of previous analytical solutions are replicated using finite element models, before applying the same techniques to optimise the design of the gravimeter. These computer models provide the ability to investigate the effect of the fabrication material of the device: anisotropic crystalline silicon. This is a parameter that is difficult to investigate analytically, but finite element modelling is demonstrated here to provide accurate predictions of real gravimeter behaviour by taking anisotropy into account. The finite element models are then used to demonstrate the design of a three-axis gravimeter enabling the gravity tensor to be measured - a significantly more powerful surveying tool than the original single-axis device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []