Lipidomics Approach in High-Fat-Diet-Induced Atherosclerosis Dyslipidemia Hamsters: Alleviation Using Ether-Phospholipids in Sea Urchin

2021 
Ether-phospholipids (ether-PLs) in sea urchins, especially eicosapentaenoic-acid-enriched plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O), exhibit potential lipid-regulating effects. However, their underlying regulatory mechanisms have not yet been elucidated. Herein, we integrated an untargeted lipidomics strategy and biochemical analysis to investigate these mechanisms in high-fat-induced atherosclerotic hamsters. Dietary supplementation with PE-P and PC-O decreased total cholesterol and low-density lipoprotein cholesterol concentrations in serum. The lipid regulatory effects of PE-P were superior to those of PC-O. Additionally, 20 lipid molecular species, including phosphatidylethanolamine, cholesteryl ester, triacylglycerol, and phosphatidylinositol, were identified as potential lipid biomarkers in the serum of hamsters with PC-O and PE-P treatment (95% confidence interval; p < 0.05). The variations of lipids may be attributed to downregulation of adipogenesis genes and upregulation of lipid β-oxidation genes and bile acid biosynthesis genes. The improved lipid homeostasis by ether-PLs in sea urchins might be a key pathway underlying the antiatherosclerosis effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    2
    Citations
    NaN
    KQI
    []