Growth optimization of TaN for superconducting spintronics

2021 
We have optimized the growth of superconducting TaN thin films on \ch{SiO2} substrates via dc magnetron sputtering and extract a maximum superconducting transition temperature of $T_{\mathrm{c}}=5$ K as well as a maximum critical field $\mu_0H_{\mathrm{c2}}=(13.8\pm0.1)$ T. To investigate the impact of spin-orbit interaction in superconductor/ferromagnet heterostructures, we then analyze the magnetization dynamics of both normal state and superconducting TaN/\ch{Ni80Fe20}(Permalloy, Py)-bilayers as a function of temperature using broadband ferromagnetic resonance (bbFMR) spectroscopy. The phase sensitive detection of the microwave transmission signal is used to quantitatively extract the inverse current-induced torques of the bilayers. The results are compared to our previous study on NbN/Py-bilayers. In the normal state of TaN, we detect a positive damping-like current-induced torque $\sigma_{\mathrm{d}}$ from the inverse spin Hall effect (iSHE) and a small field-like torque $\sigma_{\mathrm{f}}$ attributed to the inverse Rashba-Edelstein effect (iREE) at the TaN/Py-interface. In the superconducting state of TaN, we detect a negative $\sigma_{\mathrm{d}}$ attributed to the quasiparticle mediated inverse spin Hall effect (QMiSHE) and the unexpected manifestation of a large positive field-like $\sigma_{\mathrm{f}}$ of unknown origin matching our previous results for NbN/Py-bilayers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    0
    Citations
    NaN
    KQI
    []