Numerical study on solar spouted bed reactor for conversion of biomass into hydrogen-rich gas by steam gasification

2020 
Abstract A solar-powered biomass steam gasification system was developed, in which heat transfer model, flow model and chemical model were constructed to predict the distributions of temperature, pressure, mole fraction of syngas, and solar incident flux. Several key parameters of gasifier were designed to ensure the fluidization stability. Based on the model validation, gasifier performance simulations in the design working conditions were obtained. The effects of the key variable parameters, including the rim angle of the dish collector, steam-to-biomass mass flow ratio, biomass feeding rate and the solar irradiance in the different operation working conditions on the composition of syngas, lower heating value, and efficiencies were investigated. The results reveal that the coupled system implements the best gasification performance in the design conditions which the rim angle, steam-to-biomass mass flow ratio, and biomass feeding rate are set at 60°, 0.4, and 2.5 g/min, while the LHV, carbon conversion, and gasification energy efficiencies are 11.51 MJ/m3, 78.17%, and 93.01%, respectively. The overall energy efficiency considering solar energy is 30.79%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []