Spatial scale dependence of the relationship between turbulent surface heat flux and SST

2021 
This study investigates the spatial scale dependence of relationship between turbulent surface heat flux (SHF) and sea surface temperature (SST) variations in the mid-latitude frontal zones, subtropical gyres, and tropical Indo-western Pacific region in winter and summer with daily observational data. A comparison of the SHF and SST/SST tendency correlation between 1° and 4° spatial scale displays a decrease of the positive SHF–SST correlation and an increase of the negative SHF–SST tendency correlation as the spatial scale increases in all the above regions. The lead–lag SHF and SST/SST tendency correlation at different spatial scales illustrates an obvious transition from the oceanic forcing to the atmospheric forcing in the western boundary currents (WBCs) and the Agulhas Return Current (ARC) in both winter and summer. The transition length scale is smaller in summer than in winter, around 2.6°–4.5° in winter and around 0.8°–1.3° in summer based on the OAFlux data. In the subtropical gyres and tropical Indo-western Pacific region, atmospheric forcing dominates up to 10° spatial scale with the magnitude of forcing increasing with the spatial scale in both winter and summer except for the Arabian Sea in summer. The Arabian Sea distinguishes from the other tropical regions in that the SST forcing dominates up to more than 10° spatial scale in summer with the magnitude of forcing decreasing slowly with the spatial scale increase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []