Conflicting Nongenomic Effects of Progesterone in the Myometrium of Pregnant Rats.

2021 
Recently, it has been suggested that progesterone affects the contractile activity of pregnant myometrium via nongenomic pathways; therefore, we aimed to clarify whether progesterone causes and/or inhibits pregnant myometrial contractions via nongenomic pathways. Our in vitro experiments using myometrial strips obtained from rats at 20 days of gestation revealed that progesterone caused myometrial contractions in a concentration- and time-dependent manner at concentrations up to 5 × 10−7 M; however, this effect decreased at concentrations higher than 5 × 10−5 M. Similarly, progesterone enhanced oxytocin-induced contractions up to 5 × 10−7 M and inhibited contractions at concentrations higher than 5 × 10−5 M. Conversely, progesterone did not enhance high-KCl-induced contractions but inhibited contractions in a concentration- and time-dependent manner at concentrations higher than 5 × 10−7 M. We also found that RU486 did not affect progesterone-induced contractions or the progesterone-induced inhibition of high-KCl-induced contractions; however, progesterone-induced contractions were blocked by calcium-free phosphate saline solution, verapamil, and nifedipine. In addition, FPL64176, an activator of L-type voltage-dependent calcium channels, enhanced high-KCl-induced contractions and rescued the decrease in high-KCl-induced contractions caused by progesterone. Together, these results suggest that progesterone exerts conflicting nongenomic effects on the contractions of pregnant myometrium via putative L-type voltage-dependent calcium channels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []