Dynamics of salt intrusion in the Mekong Delta; results of fieldobservations and integrated coastal-inland modelling

2021 
Abstract. In the list of challenges facing the world largest deltas, increased salt intrusion and its role in jeopardizing freshwater supply is often ranked very high. Yet, detailed process-based studies of salt intrusion at the whole delta scale are limited and the trends are regularly associated to global sea level rise. Here, using field measurements and a sophisticated 3D model that integrates the riverine, rural, estuarine, and coastal dynamics within one numerical domain, we study salt intrusion at the scale of the Mekong Delta in extensive detail. While many studies down-scale the salt intrusion problem to a topic within an estuary, we show that the continental shelf is an intrinsic component of the delta, and its physical processes, such as monsoon-driven ocean surge, directly influence salinity dynamics within the delta. Typical values of 20–40 cm surge over the continental shelf contribute to up to 10 km of further salt intrusion. The delta's estuarine system is also more sensitive than many other systems to upstream discharge variations. Furthermore, spring-neap variability plays a key role in salt intrusion in the delta. The estuarine variability from a stratified to a mixed system between neap and spring tides develops 3D processes such as estuarine circulation and tidal straining that become the main upstream salt transport mechanisms. The 3D nature of salinity dynamics, and the role of upstream and downstream processes, suggests that compromising on dimension or extent of the numerical domain, can limit the accuracy of predictions of salt intrusion in the delta. The study also showcases that riverbed incision in response to anthropogenic sediment starvation in the last two decades, has increased stratification, and activated or magnified 3D salt transport sub-processes that amplify upstream salt transport. With all the external forces on the delta namely climate change and altered hydrological regime by the upstream dams, due to deeper estuarine channels (driven by sand mining and upstream impoundments), the delta itself is far more vulnerable to even mild natural events. This exemplifies the fundamental importance of preserving the sediment budget and riverbed levels in protecting the world's deltas against salt intrusion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    2
    Citations
    NaN
    KQI
    []