Response of Arabidopsis halleri to cesium and strontium in hydroponics: Extraction potential and effects on morphology and physiology

2019 
Abstract Stable isotopes of cesium (Cs) and strontium (Sr) as well as their radioactive isotopes are of serious environmental concern. The pollution of the biosphere, particularly soil and water has received considerable attention for removal of these contaminants in recent years. Arabidopsis halleri (A. halleri) is a hyperaccumulator plant species able to take up large amounts of several metals into its above ground organs without showing significant signs of toxicity. Therefore, we investigated responses, metal accumulation and element distribution in roots and leaves of A. halleri after treatment with stable Cs and Sr. Plants were hydroponically grown in different concentrations of cesium sulfate (between 0.002 and 20 mM) and strontium nitrate (between 0.001 and 100 mM). Uptake of Cs and Sr into leaves was analyzed from extracts by inductively coupled plasma mass spectrometry (ICP-MS). Although internal concentration of Cs and Sr increased with rising external concentrations, the amount of accumulated metal in relation to available metal decreased. Therefore, the potential of the plant to effectively transfer metals from growth medium to leaves occurred at low and moderate concentrations, whereas after that when the concentration of metal increased further the transfer factors were decreased. A. halleri accumulated Sr more efficiently than Cs. The transfer factors were higher for Sr (up to 184) than for Cs (up to 16). The results indicate positive correlation of Cs and Sr accumulation to K and Ca transport to leaves. The toxicity of Cs and Sr was assessed by measuring photosynthetic efficiency and growth parameters. In leaves, Cs and Sr affected the chlorophyll fluorescence at their low and high concentrations. Significant reduction of plant growth (dry weight of roots and leaves) was observed at Sr concentrations >0.01 mM. Cs-treated plants exhibited only decreased length of leaves at concentrations>0.02 mM. The distribution of the elements within the different tissues of leaves and roots was investigated by using Energy Dispersive X-Ray microanalysis (EDX) with a scanning electron microscope (SEM). EDX revealed that Cs and Sr were accumulated differently in root and leaf tissues. The hydroponic experiment showed a potential for A. halleri to treat hotspots with radioactive Cs and Sr.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    8
    Citations
    NaN
    KQI
    []