Chemical Characterization and Source Apportionment of PM2.5 in Rabigh, Saudi Arabia

2017 
The present study describes the measurement, chemical characterization and delineation of sources of fine particulate matter (PM2.5) in Rabigh, Saudi Arabia. The 24-h PM2.5 was collected from May 6–June 17, 2013. The sources of various air pollutants and their characterization was carried by computations of Enrichment Factor (EF), Positive Matrix Factorization (PMF) and Backward-in-time Trajectories. The 24-h PM2.5 showed significant temporal variability with average (37 ± 16.2 μg m) exceeding the WHO guideline (20 μg m) by 2 fold. SO4, NO3, NH4 and Cl ions dominated the ionic components. Two broad categories of aerosol Trace Elements (TEs) sources were defined as anthropogenic (Ni, V, Zn, Pb, S, Lu and Br) and soil/crustal derived (Si, Rb, Ti, Fe, Mn, Mg, K, Sr, Cr, Ca, Cu, Na and Al) elements from computations of EF. Anthropogenic elements originated primarily from fossil-fuel combustion, automobile and industrial emissions. A factor analysis model (PMF) indicated the major sources of PM2.5 as Soil (Si, Al, Ti, Fe, Mg, K and Ca); Industrial Dust (Ca, Fe, Al, and Si); Fossil-Fuel combustion (V, Ni, Pb, Lu, Cu, Zn, NH4, SO4 and BC); Vehicular Emissions (NO3, C2O4, V and BC) and Sea Sprays (Cl and Na). Backward-in-time trajectories showed a significant contribution by long distance transport of fine aerosols to the overall daily PM2.5 levels. Results are consistent with previous studies and highlight the need for more comprehensive research into particulate air pollution in Rabigh and the neighboring areas. This is essential for the formulation of sustainable guidelines on air pollutant emissions in Saudi Arabia and the whole Middle East.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    23
    Citations
    NaN
    KQI
    []