Matter fields in triangle–hinge models

2016 
The worldvolume theory of membrane is mathematically equivalent to three-dimensional quantum gravity coupled to matter fields corresponding to the target space coordinates of embedded membrane. In a recent paper [arXiv:1503.08812] a new class of models are introduced that generate three-dimensional random volumes, where the Boltzmann weight of each configuration is given by the product of values assigned to the triangles and the hinges. These triangle-hinge models describe three-dimensional pure gravity and are characterized by semisimple associative algebras. In this paper, we introduce matter degrees of freedom to the models by coloring simplices in a way that they have local interactions. This is achieved simply by extending the associative algebras of the original triangle-hinge models, and the profile of matter field is specified by the set of colors and the form of interactions. The dynamics of a membrane in $D$-dimensional spacetime can then be described by taking the set of colors to be $\mathbb{R}^D$. By taking another set of colors, we can also realize three-dimensional quantum gravity coupled to the Ising model, the $q$-state Potts models or the RSOS models. One can actually assign colors to simplices of any dimensions (tetrahedra, triangles, edges and vertices), and three-dimensional colored tensor models can be realized as triangle-hinge models by coloring tetrahedra, triangles and edges at a time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    4
    Citations
    NaN
    KQI
    []