2-D Spatially Variant Motion Error Compensation for High-Resolution Airborne SAR Based on Range-Doppler Expansion Approach

2021 
Motion errors are inevitable in real-world scenarios and introduce significant phase errors in airborne synthetic aperture radar (SAR) imaging. Generally, these errors consist of the cross-coupling and spatially variant components. Cross-coupling errors can usually be eliminated by motion compensation (MoCo), whereas the latter are seldom addressed, which deteriorate the imaging qualities, especially for the high-resolution cases. To solve the problem, a novel approach based on 2-D range-Doppler expansion is proposed. First, an accurate range equation of the aircraft is obtained based on the inertial navigation system (INS) data. Then, the range-Doppler expansion corresponding to the slant range and Doppler centroid are performed, by which the echo signal is decoupled into two spatially variant parts in range and azimuth directions. Finally, the chirp-z transforms (CZTs) are employed to remove the range and azimuth spatial variations introduced, respectively, by the cross-track and along-track errors. Different from the conventional methods, our approach can greatly decrease the cross-coupling and spatially variant effects brought by motion errors in high-resolution cases. Computer simulation and real data experiments demonstrate the effectiveness of the proposed approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []