Chain Length Dependence of Apomyoglobin Folding: Structural Evolution from Misfolded Sheets to Native Helices†

2003 
Very little is known about how protein structure evolves during the polypeptide chain elongation that accompanies cotranslational protein folding. This in vitro model study is aimed at probing how conformational space evolves for purified N-terminal polypeptides of increasing length. These peptides are derived from the sequence of an all-α-helical single domain protein, Sperm whale apomyoglobin (apoMb). Even at short chain lengths, ordered structure is found. The nature of this structure is strongly chain length dependent. At relatively short lengths, a predominantly non-native β-sheet conformation is present, and self-associated amyloid-like species are generated. As chain length increases, α-helix progressively takes over, and it replaces the β-strand. The observed trends correlate with the specific fraction of solvent-accessible nonpolar surface area present at different chain lengths. The C-terminal portion of the chain plays an important role by promoting a large and cooperative overall increase in h...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    62
    Citations
    NaN
    KQI
    []