Immunopotentiator Thymosin Alpha-1 Promotes Neurogenesis and Cognition in the Developing Mouse via a Systemic Th1 Bias

2017 
In early life, the immune system plays an essential role in brain development. In our study, the immunopotentiator thymosin alpha-1 (Ta1) was peripherally administered to neonatal mice to explore whether the peripheral immunopotentiator affects neurodevelopment and cognition, and to further investigate the relevant mechanism. Compared with the control group, the Ta1 mice displayed better cognitive abilities in early life. The numbers of 5-bromodeoxyuridine (BrdU)+, nestin+, T-box transcription factor 2 (Tbr2)+, BrdU+/doublecortin (DCX)+, BrdU+/ionized calcium-binding adaptor molecule 1 (Iba1)+, and BrdU+/neuronal nuclei (NeuN)+ cells in the hippocampus were increased in the Ta1 group, accompanied by increased interleukin-4 (IL-4), interferon-gamma, brain-derived neurotrophic factor, nerve growth factor, and insulin-like growth factor-1 as well as decreased IL-6 and tumor necrosis factor-α. Furthermore, the Ta1-group showed a Th1-polarized immune response, and the neurotrophic factors were positively associated with the Th1/Th2 ratio. More importantly, administration of Ta1 blocked lipopolysaccharide-induced impairment of hippocampal neurogenesis in early life. These findings suggest that peripheral Ta1 contributes to neurogenesis and cognition probably through a systemic Th1 bias, as well as neuroprotection against LPS infection by Ta1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    9
    Citations
    NaN
    KQI
    []