GENETIC ANALYSIS OF NEONATAL DEATH WITH GROWTH RETARDATION IN F1 MALE DH/+MICE

1999 
Nearly all F1 male mice with Dh/+ genotype between DDD female and DH–Dh/+ male die within a few days after birth; however, this is not observed in the reciprocal cross. The F1Dh/+ males usually exhibit growth retardation prior to death. To identify the putative genetic locus or loci in DDD genome that cause the abnormalities in the presence of the Dh, a linkage analysis was carried out in backcross progeny of a cross of (DDD female × DH–+/+ male) F1 female × DH–Dh/+ male. Appearance of growth retardation was examined from the day of birth, and both growth-retarded and normally weaned Dh/+ males were genotyped for microsatellite marker loci spanning autosomes and the X Chromosome (Chr). Significant evidence for linkage was identified on the distal edge of the X Chr, near the microsatellite marker of DXMit135. Furthermore, among mice from DDD female × reciprocal F1Dh/+ male produced between DH–Dh/+ and progenitor strains (C57BL/6J, C3H/HeJ and BALB/cA), only the progeny from ♀DDD ×♂(♀DH–Dh/+×♂C3H/HeJ) F1Dh/+ male did not show any lethality and/or growth retardation. Thus, the lethality in F1Dh/+ males accompanied by growth retardation is caused by the interactions between the Dh gene, X Chr, and Y Chr. Based on the CAG repeat sequence length polymorphism among Mus musculus musculus Sry gene, C3H/HeJ was different from C57BL/6J, BALB/cA, and DH. These data suggest that there are at least two functional types of Y Chr in Mus musculus musculus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []