A higher efficiency of converting gas to stars push galaxies at z ~ 1.6 well above the star-forming main sequence

2015 
Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high-redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ~ 1.6) starburst galaxies with the Atacama Large (sub-)Millimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared detected galaxies having star formation rates (~300-800 Msolar/yr) elevated (>4x) above the star-forming `main sequence', and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ~ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (~30-50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as main-sequence outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical main-sequence star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the main sequence with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts such as being metal rich and having a higher ionization state of the interstellar medium.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    114
    Citations
    NaN
    KQI
    []