Structural and metal-insulator transitions in ionic liquid-gated Ca3Ru2O7 surface

2014 
We report the fabrication and measurements of ionic liquid gated Hall bar devices prepared on the ab face of a thin Ca3Ru2O7 flake exfoliated from bulk single crystals that were grown by a floating zone method. The devices were categorized into two types: those with their electrical transport properties dominated by c-axis transport in type A or that of the in-plane in type B devices. Bulk physical phenomena, including a magnetic transition near 56 K, a structural and metal-insulator transition at a slightly lower temperature, as well as the emergence of a highly unusual metallic state as the temperature is further lowered, were found in both types of devices. However, the Shubnikov-de Haas oscillations were found in type A but not type B devices, most likely due to enhanced disorder on the flake surface. Finally, the ionic liquid gating of a type B device revealed a shift in critical temperature of the structural and metal-insulator transition, suggesting that this transition is tunable by the electric f...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []