Simulation Study on Positive Corona Discharge of Receptors on Rotating Wind Turbine Blade Tips under Thundercloud Electric Fields

2019 
Recent lightning simulation experiments have not simulated the influence of blade rotation in the long term after corona inception. This study uses a finite element method and considers the adhesion and collision processes of positive ions, aerosol ions, and neutral particles to establish a two-dimensional positive corona discharge model based on a multicomponent diffusion transport equation. The microscopic distribution of these three types of particles and the influence mechanism of charged particles’ migration under electric fields and wind were studied. The results show that ion migration is affected by both electric field and wind speed. The higher the wind speed, the larger is the deviation amplitude of charged particles along the direction of wind. With an increase in wind speed, the corona current on the receptor surface gradually increases. When the wind speed is 30 m/s, the corona current peak value increases by almost six times when compared with that when no wind is present. From this, it can be inferred that blade rotation reduces the concentration of positive ion in the receptor area, thereby facilitating electron avalanche and streamer-leader conversion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []