Probing the low-temperature limit of the quantum

2020 
Quantum anomalous Hall effect has been observed in magnetically doped topological insulators. However, full quantization, up until now, is limited within the sub–1 K temperature regime, although the material's magnetic ordering temperature can go beyond 100 K. Here, we study the temperature limiting factors of the effect in Cr-doped (BiSb)2Te3 systems using both transport and magneto-optical methods. By deliberate control of the thin-film thickness and doping profile, we revealed that the low occurring temperature of quantum anomalous Hall effect in current material system is a combined result of weak ferromagnetism and trivial band involvement. Our findings may provide important insights into the search for high-temperature quantum anomalous Hall insulator and other topologically related phenomena.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []