Single-AtomFluorescence Switch: A General Approachtoward Visible-Light-ActivatedDyes for Biological Imaging

2019 
Photoactivatable fluorophores afford powerful molecular tools to improve the spatial and temporal resolution of subcellular structures and dynamics. By performing a single sulfur-for-oxygen atom replacement within common fluorophores, we have developed a facile and general strategy to obtain photoactivatable fluorogenic dyes across a broad spectral range. Thiocarbonyl substitution within fluorophores results in significant loss of fluorescence via a photoinduced electron transfer-quenching mechanism as suggested by theoretical calculations. Significantly, upon exposure to air and visible light residing in their absorption regime (365–630 nm), thio-caged fluorophores can be efficiently desulfurized to their oxo derivatives, thus restoring strong emission of the fluorophores. The effective photoactivation makes thio-caged fluorophores promising candidates for super-resolution imaging, which was realized by photoactivated localization microscopy (PALM) with low-power activation light under physiological cond...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    39
    Citations
    NaN
    KQI
    []