Interpretation of the differential UV-visible absorbance spectra of metal-NOM complexes based on the quantum chemical simulations for the model compound esculetin

2021 
Abstract In this study, the model compound esculetin that has functional groups typical for natural organic matter (NOM) was used to ascertain the nature of the characteristic bands in the differential UV-visible absorbance spectra (DAS) associated with the formation of metal-NOM complexes. The binding of ten different metal ions (Cu(II), Ni(II), Co(II), Fe(III), Cr(III), Al(III), Zn(II), Ca(II), Mg(II) and Pb(II)) with esculetin generate four bands in the DAS. These bands are similar to those present in the DAS of metal-NOM complex. The UV-visible absorbance spectra of the metal-esculetin systems were calculated using time-dependent density functional theory (TD-DFT). The TD-DFT results demonstrate that the prominent features of the DAS of esculetin are primarily associated with the electron transitions between the molecular orbitals near the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the metal-esculetin complex. Charge decomposition analysis (CDA) results demonstrated that these electron transitions originate from the esculetin fragment to the Zn(II) fragment in the complex. Covalent indexes [(χm)2rc] of the metal ions were found to be correlated with the metal-specific features of the DAS of metal-esculetin systems. The strength of the linear correlations between the quantitative parameters of the electron density of the bond critical points (BCP) is indicative of the strength of the metal-esculetin interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    1
    Citations
    NaN
    KQI
    []