Osseointegration of 3D porous and solid Ti–6Al–4V implants - Narrow gap push-out testing and experimental setup considerations

2020 
Abstract Porosity in titanium alloy materials improves the bony integration and mechanical properties of implants. In certain areas of application such as vertebral spacers or trabecular bone replacement (e.g. wedge augmentation in prosthetics), surface structures are desirable that promote bone integration and have biomechanical properties that are resistant to intraosseous load transfers and at the same time resemble the stiffness of bone to possible reduce the risk of stress shielding. In the present study, we investigated the biomechanical push-out behavior of an open-porous Ti–6Al–4V material that was produced in a space-holder and sintering method creating a 3-D through-pores trabecular design that corresponds with the inhomogeneity and size relationships of trabecular bone. The short-term and mid-term effects of the material properties on osseointegration in a biomechanical push-out study were compared to those of to a conventional solid Ti–6Al–4V material. In order to raise the measurement accuracy we implemented a strict study protocol. Pairs of cylindrical implants with a porosity of 49% and an average pore diameter of 400 μm and equal sized solid, corundum blasted devices as reference were bilaterally implanted press fit in the lateral femoral condyles of 14 rabbits. After sacrifice at 4 and 12 weeks, a push-out test was performed while the test set-up was designed to ensure conformity of implant axes and direction of applied force. Maximum holding force, Young's modulus, and mode of failure were recorded. Results of maximum push-out force (F-max) revealed a significant material effect (p  Conclusively, the porous implant offers surface properties that significantly improve its osseous stability compared to solid material under experimental conditions. In addition, we have optimized our study protocol for biomechanical push-out tests to produce precise and comparable results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    3
    Citations
    NaN
    KQI
    []