Planetary‐scale variations in winds and UV brightness at the Venusian cloud top: Periodicity and temporal evolution

2019 
Planetary-scale waves at the Venusian cloud-top cause periodic variations in both winds and ultraviolet (UV) brightness. While the wave candidates are the 4-day Kelvin wave and 5-day Rossby wave with zonal wavenumber 1, their temporal evolutions are poorly understood. Here we conducted a time series analysis of the 365-nm brightness and cloud-tracking wind variations, obtained by the UV Imager onboard the Japanese Venus Climate Orbiter Akatsuki from June to October 2017, revealing a dramatic evolution of planetary-scale waves and corresponding changes in planetary-scale UV features. We identified a prominent 5-day periodicity in both the winds and brightness variations, whose phase velocities were slower than the dayside mean zonal winds (or the super-rotation) by >35 m s$^{-1}$. The reconstructed planetary-scale vortices were nearly equatorially symmetric and centered at ~35° latitude in both hemispheres, which indicated that they were part of a Rossby wave. The amplitude of winds variation associated with the observed Rossby wave packet were amplified gradually over ~20 days and attenuated over ~50 days. Following the formation of the Rossby wave vortices, brightness variation emerges to form rippling white cloud belts in the 45°-60° latitudes of both hemispheres. ~3.8-day periodic signals were observed in the zonal wind and brightness variations in the equatorial region before the Rossby wave amplification. Although the amplitude and significance of the 3.8-day mode were relatively low in the observation season, this feature is consistent with a Kelvin wave, which may be the cause of the dark clusters in the equatorial region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    11
    Citations
    NaN
    KQI
    []