Aggregation Thermodynamics of Sodium Octanoate Micelles Studied by Means of Molecular Dynamics Simulations

2013 
The present work is aimed at studying the computation of the thermodynamic potentials that describe the stability of anionic surfactant molecules in micellar aggregates. We report a set of molecular dynamics simulations of a sodium octanoate micelle in aqueous solution using the umbrella sampling method along with the Jarzynski equality in order to compute the potential of mean force for the dissociation process of one surfactant molecule from a previously assembled micellar aggregate. The Jarzynski average was computed at several different temperatures in order to estimate the Gibbs energy of association for the octanoate anion, which was split into its enthalpic and entropic contributions. We also estimated the contributions arising from the polar head and the apolar tail for each thermodynamic potential, and a detailed picture emerged from these simulations. The aggregation is driven mostly by the Gibbs energy contribution arising from the hydrophobic tail, which was large enough to cancel out the unfa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    17
    Citations
    NaN
    KQI
    []