LFT Structured Uncertainty Modeling and Robust Loop-Shaping Controller Optimization for an Ultraprecision Positioning Stage

2014 
In this paper, a practical modeling and robust controller optimization strategy is presented for an ultraprecision positioning stage with position-dependent dynamics to achieve ultraprecision positioning accuracy. A linear-fractional-transformation structured uncertainty modeling procedure is proposed to describe the varying dynamics of the stage. The modeling process involves the global curve fitting of frequency response functions and dimensionality reduction for the uncertainty structure so that the uncertainty set could be minimized. Then, a robust loop-shaping controller optimization method is presented to improve the control performances. The optimization objective includes the control bandwidth and the disturbance rejection ability, and μ analysis is employed as a nonconservative robust condition with respect to the structured uncertainty. A genetic algorithm is then utilized to determine the optimal parameters of the controller. Comparative experiments on a developed ultraprecision positioning stage are finally conducted, and the results validate that significant improvements on rising time, settling time, and positioning accuracy have been achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    13
    Citations
    NaN
    KQI
    []