Photoelectric properties of aromatic triangular tri-palladium complexes and their catalytic applications in the Suzuki–Miyaura coupling reaction

2021 
The photoelectric properties and catalytic activities of substituted triphenylphosphine and sulfur/selenium ligand supported aromatic triangular tri-palladium complexes 1–4, abbreviated as [Pd3]+, were investigated. The cyclic voltammogram of [Pd3]+ in CH3CN-nBu4NPF6 showed a single quasi-reversible wave which was consistent with their robust property and provided preliminary proof for their electron transfer processes in catalysis. With excitation at 267 nm, [Pd3]+ exhibited strong ratiometric fluorescence at 550 and 780 nm at a temperature gradient from 77 K to 287 K. These peculiar triangular tri-palladium complexes showed excellent catalytic activities and exclusive reactivity with aryl iodides over the other halogenated aromatics in the Suzuki–Miyaura coupling reaction. The electronic and steric hindrance effects of substituents on the aryl iodides and aryl boronic acids including heteroaromatics like pyridine, pyrazine and thiophenes were explored and most substrates achieved up to 99% of yields. (2-[1,1′-Biphenyl]-2-ylbenzothiazole) which was analogous to the selective cyclooxygenase-2 (COX-2) inhibitors was also synthesized with our tri-palladium catalyst and gave good isolated yield (94%). The study of the catalytic process revealed that the mechanism of the reaction may involve the replacement of the sulphur ligand on [Pd3]+ by iodine from aryl iodides, which was beneficial for the matching of C–I bond energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    1
    Citations
    NaN
    KQI
    []