Normal, Dust-Obscured Galaxies in the Epoch of Reionization.

2021 
Over the past decades, rest-frame ultraviolet (UV) observations have provided large samples of UV luminous galaxies at redshift (z) greater than 6, during the so-called epoch of reionization. While a few of these UV identified galaxies revealed significant dust reservoirs, very heavily dust-obscured sources at these early times have remained elusive. They are limited to a rare population of extreme starburst galaxies, and companions of rare quasars. These studies conclude that the contribution of dust-obscured galaxies to the cosmic star formation rate density at $z>6$ is sub-dominant. Recent ALMA and Spitzer observations have identified a more abundant, less extreme population of obscured galaxies at $z=3-6$. However, this population has not been confirmed in the reionization epoch so far. Here, we report the discovery of two dust-obscured star forming galaxies at $z=6.6813\pm0.0005$ and $z=7.3521\pm0.0005$. These objects are not detected in existing rest-frame UV data, and were only discovered through their far-infrared [CII] lines and dust continuum emission as companions to typical UV-luminous galaxies at the same redshift. The two galaxies exhibit lower infrared luminosities and star-formation rates than extreme starbursts, in line with typical star-forming galaxies at $z\sim7$. This population of heavily dust-obscured galaxies appears to contribute 10-25 per cent to the $z>6$ cosmic star formation rate density.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []