Exceptional point in a metal-graphene hybrid metasurface with tunable asymmetric loss

2020 
Observation of exceptional points (EPs) in non-Hermitian parity-time (PT) symmetric systems has led to various nontrivial physics and exotic phenomena. Here, a metal-graphene hybrid non-Hermitian metasurface is proposed in the terahertz regime, whose unit cell is composed of two orthogonally oriented split-ring resonators (SRRs) with identical dimensions but only one SRR containing a graphene patch at the gap. An EP in polarization space is theoretically observed at a certain Fermi level of the graphene patch, where the induced asymmetric loss and the coupling strength between the two SRRs match a certain relation predicted by a coupled mode theory. The numerical fittings using the coupled mode theory agree well with the simulations. Besides, an abrupt phase flip around the EP frequency is observed in the transmission in circular polarization basis, which can be very promising in ultra-sensitive sensing applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    3
    Citations
    NaN
    KQI
    []