Recent Progress in Proximity Coupling of Magnetism to Topological Insulators.

2021 
Inducing long-range magnetic order in three-dimensional topological insulators can gap the Diraclike metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topological phases can host robust, dissipationless charge and spin currents or unique magnetoelectric behavior, which can be exploited in low-energy electronics and spintronics applications. Although several different strategies have been successfully implemented to realize these states, to date these phenomena have been confined to temperatures below a few Kelvin. In this review, we focus on one strategy, inducing magnetic order in topological insulators by proximity of magnetic materials, which has the capability for room temperature operation, unlocking the potential of magnetic topological phases for applications. We discuss the unique advantages of this strategy, the important physical mechanisms facilitating magnetic proximity effect, and the recent progress to achieve, understand, and harness proximity-coupled magnetic order in topological insulators. We also highlight some emerging new phenomena and applications enabled by proximity coupling of magnetism and topological materials, such as skyrmions and the topological Hall effect, and we conclude with an outlook on remaining challenges and opportunities in the field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    279
    References
    3
    Citations
    NaN
    KQI
    []