Catalytic Asymmetric Radical Diamination of Alkenes

2017 
Summary Catalytic asymmetric diamination of alkenes is a highly attractive method for creating chiral vicinal diamines, which are ubiquitous in biologically active molecules and versatile ligands as well as organocatalysts. We report the use of O -acylhydroxylamines as dialkylaminyl radical precursors to trigger asymmetric diamination of alkene under Cu(I)/chiral phosphoric acid dual catalysis. This reaction allows for direct alkylamine incorporation and features high enantioselectivity, a broad substrate scope, wide functional-group tolerance, and mild reaction conditions, providing convenient and practical access to a wide range of highly enantio-enriched β-alkylamine-containing pyrrolidines. We have also achieved asymmetric azidoamination of alkenes by using azidoiodinane as an azidyl radical precursor, offering a complementary method for preparing diverse chiral β-amino pyrrolidines. The application of the resultant α-tertiary pyrrolidine-derived diamine was showcased to significantly promote the enantioselectivity of an asymmetric Michael reaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    76
    Citations
    NaN
    KQI
    []