Ecological responses of Stipa steppe in Inner Mongolia to experimentally increased temperature and precipitation 5: Synthesis and implications

2018 
A randomised block experiment was conducted to study the response of plant community characteristics (biomass, density and diversity) and ecosystem carbon exchange processes to warming, increased precipitation and their combination on Stipa steppe in Inner Mongolia. Increased precipitation enhanced the effect that warming had in promoting community diversity and biomass. Increased precipitation directly increased net ecosystem exchange and gross ecosystem productivity, although ecosystem respiration and soil respiration also increased. However, warming did not have a significant effect on net ecosystem exchange and gross ecosystem productivity, whereas ecosystem respiration and soil respiration were significantly decreased by warming. All carbon flux processes had a significantly positive correlation with soil moisture. However, the carbon sequestration processes, gross ecosystem productivity and net ecosystem exchange, were significantly negatively correlated with temperature, contrary to carbon emission processes, soil respiration and ecosystem respiration. Results suggest that Stipa steppe may be benefited by future climate change, as the predicted precipitation is increasing with warming in Inner Mongolia. However, it is hard to predict the feedback of Stipa steppe to climate, because of the uncertainty in magnitude and temporal dynamics of climate change. To reveal the mechanism of the observed responses, further studies are suggested in this region on the effects of altered climate variables on plant species interactions, soil organic carbon composition, soil extracellular enzyme activity, microbial biomass and microbial respiration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    3
    Citations
    NaN
    KQI
    []